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Appendix A
In the paper we have found the following expression for EUN−1

a (ω, r1, b2) in a split-the-pie domain (Eq. (12) in the paper):

EUN−1
a (ω, r1, b2) =

{
1
b2

· (1− u1(ω)) · (u1(ω)− r1) + r1 if 1− b2 ≤ u1(ω)

u1(ω) otherwise

Our goal is to find the offer ω that maximizes this value.
To simplify notation, we will now write u1(ω) as x and EUN−1

a (ω, r1, b2) as f(x). So, the goal is to find the value of x that maximizes the
following expression on the interval [0, 1].

f(x) =

{
x if x ≤ 1− b2
1
b2

· (1− x) · (x− r1) + r1 if x ≥ 1− b2
(16)

To find the maximum of this function, we first have to find its maxima on the two respective intervals [0, 1− b2] and [1− b2, 1] separately. For
the first interval it is clear that the maximum is attained at x = 1− b2, and its value there is f(x) = 1− b2.

For the second interval, we first rewrite its expression as:

f(x) =
1

b2
· (1− x) · (x− r1) + r1

=
1

b2
(−x2 + x+ xr1 − r1) + r1

Then, to find its maximum (which we will denote by x̂) we calculate its derivative:

∂f

∂x
=

−2x+ (1 + r1)

b2

Setting this derivative to zero we find: −2x+ (1 + r1) = 0, from which we get: x̂ = 1
2
+ 1

2
r1. Note that the second derivative is − 2

b2
, which

is strictly negative, which means that x̂ is indeed a maximum (as opposed to a minimum).
Now, the maximum x̂ of the quadratic expression is not necessarily the maximum of the function f (which we will denote by xmax), because

x̂ might fall outside the domain [1− b2, 1] where the quadratic expression is valid. So, we need to check whether or not x̂ ∈ [1− b2, 1]. To do
this, first note that since r1 < 1, we immediately have that 1

2
+ 1

2
r1 < 1, so indeed x̂ < 1. So, we now only need to check that x̂ ≥ 1− b2. It

is easy to see that this is true if and only if r1 ≥ 1− 2b2:

1

2
+

1

2
r1 ≥ 1− b2

1

2
r1 ≥ 1

2
− b2

r1 ≥ 1− 2b2
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In other words, we now have that xmax = x̂ if and only if r1 ≤ 1− 2b2.
In the case that r1 > 1− 2b2, which implies that x̂ < 1− b2, we have that the quadratic expression is strictly decreasing after x = 1− b2

(see Figure 1, left), which means that the overall maximum of f lies exactly at x = 1− b2.
Combing these two results we get:

xmax =

{
1− b2 if r1 ≤ 1− 2b2
1
2
+ 1

2
r1 if r1 ≥ 1− 2b2

(17)

Finally, since the condition r1 ≤ 1− 2b2 is equivalent to 1
2
+ 1

2
r1 ≤ 1− b2, we see that Eq. (17) can be rewritten as:

xmax = max { 1

2
+

1

2
r1 , 1− b2 }
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Figure 1. Left: plot of Equation (16) for the values r1 = 0.1 and b2 = 0.3. The solid black line represents the actual function f , while the dashed red line
represents the part of the quadratic expression outside the region where it is valid (i.e. for x < 1 − b2). Right: the same, but now for the values r1 = 0.1 and
b2 = 0.7.

Appendix B

We here prove Theorem 3 of the paper.
We will use b′2 as a shorthand for bN−2

2 and b2 as a shorthand for bN−1
2 .

To prove the theorem, we will first calculate UN−1
p (r1, r2, b2) (i.e. the anticipated utility for α2 when α1 makes the optimal proposal in

round N − 1). We start from Eq. (9) of the paper, and use the fact that in a split-the-pie-domain we have u2(ω) = 1− u1(ω), for any offer ω.
So we get:

UN−1
p (r1, r2, b2) =

{
1− u1(ω

∗N−1) if r2 < 1− u1(ω
∗N−1)

r2 otherwise

Combining this with Eq. (8) from the paper and Eq. (17) we get:

UN−1
p (r1, r2, b2) =


b2 if r2 < b2 and r1 ≤ 1− 2b2
1
2
− 1

2
r1 if r2 < 1

2
− 1

2
r1 and r1 ≥ 1− 2b2

r2 otherwise

However, the inequality r2 < b2 always holds, by definition of b2 (see Eq. (3) in the paper) and by the assumption that agents are rational, so
it can be removed. Furthermore, note that the condition r2 < 1

2
− 1

2
r1 can be rewritten as r1 < 1− 2r2, so we get:

UN−1
p (r1, r2, b2) =


b2 if r1 ≤ 1− 2b2
1
2
− 1

2
r1 if r1 ∈ [1− 2b2, 1− 2r2]

r2 if r1 ≥ 1− 2r2

(18)

Now, to continue with our proof of Theorem 3, recall that ω∗N−1 is the offer that maximizes EUN−1
a , which means that by definition it

satisfies u1(ω
∗N−1) = xmax (see Appendix A). So, the expression for EUN−1

a (ω∗N−1, r1, b2) can be found by replacing u1(ω) in Eq. (12)
by the expression for xmax as given by Eq. (17). This yields:

EUN−1
a (ω∗N−1, r1, b2) =

1− b2 if r1 ≤ 1− 2b2
1

4b2
·
(
1− r1

)2

+ r1 if r1 ≥ 1− 2b2



Combining this with Eqs. (10) and (11) from the paper, we get:

UN−2
a (ω, r1, r2, b

′
2) =


u2(ω) if r1 ≤ 1− 2b2 and 1− b2 ≤ 1− u2(ω)

u2(ω) if r1 ≥ 1− 2b2 and 1
4b2

·
(
1− r1

)2

+ r1 ≤ 1− u2(ω)

UN−1
p (r1, r2, b2) otherwise

Note that if α2 proposes ω in round N − 2 then we must have b2 ≤ u2(ω), by Eq. (3) from the paper. This means that the condition
1− b2 ≤ 1− u2(ω) can only hold if b2 = u2(ω).

Furthermore, for the same reason, we note that the condition 1
4b2

·
(
1− r1

)2

+ r1 ≤ 1− u2(ω) implies:

1

4b2
·
(
1− r1

)2

+ r1 ≤ 1− b2 (19)

This can be rewritten as:

1

4b2
·
(
1− r1

)2

+ (r1 − 1) + b2 ≤ 0

(1− r1)
2 + 4b2 · (r1 − 1) + 4b22 ≤ 0

((r1 − 1) + 2b2)
2 ≤ 0

which clearly can only hold if (r1 − 1) + 2b2 = 0, which means we have:

r1 = 1− 2b2

Furthermore, we again must have b2 = u2(ω) because otherwise the inequality in Eq. (19) would be strict and then there would be no solution
at all. We are therefore left with:

UN−2
a (ω, r1, r2, b

′
2) =


u2(ω) if r1 ≤ 1− 2b2 and b2 = u2(ω)

u2(ω) if r1 = 1− 2b2 and b2 = u2(ω)

UN−1
p (r1, r2, b2) otherwise

but now we see that the second condition is just a special case of the first one, so it can be omitted:

UN−2
a (ω, r1, r2, b

′
2) =

{
u2(ω) if r1 ≤ 1− 2b2 and b2 = u2(ω)

UN−1
p (r1, r2, b2) otherwise

Finally, when we look at Eq. (18) then we see that if the first condition holds, then u2(ω) actually equals UN−1
p (r1, r2, b2), so we can just

as well write:
UN−2

a (ω, r1, r2, b
′
2) = UN−1

p (r1, r2, b2) (20)

Note that it looks as if UN−2
a (ω, r1, r2, b

′
2) does not depend on the offer ω because ω does not appear on the right-hand side. However, this

is misleading, because the right-hand side does depend on b2, which depends on the offer that α2 proposes.
The next step to determine the optimal offer, is to integrate UN−2

a over all possible values of r1:

EUN−2
a (ω, r2, b

′
1, b

′
2) =

1

b′1

∫ b′1

0

UN−2
a (ω, r1, r2, b

′
2) dr1

=
1

b′1

∫ b′1

0

UN−1
p (r1, r2, b2) dr1

where b2 = min{u2(ω), b
′
2}.

We see from Eq. (18) that the expression for UN−1
p is different on three separate intervals, which are demarcated by the values 1− 2b2 and

1 − 2r2. Therefore, to calculate the integral we have to distinguish between six different cases depending on which of these three intervals
have any overlap with the interval [0, b′1] over which we are integrating.

Case 1: 0 ≤ b′1 ≤ 1− 2b2 ≤ 1− 2r2

In this case the interval of integration [0, b′1] is entirely contained within the first interval of Eq. (18), so we get:

EUN−2
a (ω, r2, b

′
1, b

′
2) =

1

b′1
·
∫ b′1

0

b2 dr1 = b2



Case 2: 1− 2b2 ≤ 0 ≤ b′1 ≤ 1− 2r2

In this case the interval of integration [0, b′1] is entirely contained within the middle interval of Eq. (18), so we get:

EUN−2
a (ω, r2, b

′
1, b

′
2) =

1

b′1
·
∫ b′1

0

1

2
− 1

2
r1 dr1

=
1

b1
·
(1
2
b′1 −

1

4
b′21

)
=

1

2
− 1

4
b′1

Case 3: 1− 2b2 ≤ 1− 2r2 ≤ 0 ≤ b′1

In this case the interval of integration [0, b′1] is entirely contained within the last interval of Eq. (18), so we get:

EUN−2
a (ω, r2, b

′
1, b

′
2) =

1

b′1
·
∫ b′1

0

r2 dr1 = r2

Case 4: 0 ≤ 1− 2b2 ≤ b′1 ≤ 1− 2r2

In this case the interval of integration [0, b′1] (partially) overlaps with the first two intervals of Eq. (18), so we get:

EUN−2
a (ω, r2, b

′
1, b

′
2) =

1

b′1
·
(∫ 1−2b2

0

b2 dr1 +

∫ b′1

1−2b2

1

2
− 1

2
r1dr1

)
=

1

b′1
·
(
(1− 2b2) · b2 +

1

2
r1 −

1

4
r21

∣∣∣b′1
1−2b2

)
=

1

b′1
·
(
b2 − 2b22 +

1

2
b′1 −

1

4
b′21 − 1

2
(1− 2b2) +

1

4
(1− 2b2)

2
)

=
1

b′1
·
(
b2 − 2b22 +

1

2
b′1 −

1

4
b′21 − 1

2
+ b2 +

1

4
− b2 + b22

)
=

1

b′1
·
(
b2 − b22 +

1

2
b′1 −

1

4
b′21 − 1

4

)
=

1

b′1
·
(
b2 − b22 −

1

4

)
+

1

2
− 1

4
b′1

Case 5: 1− 2b2 ≤ 0 ≤ 1− 2r2 ≤ b′1

In this case the interval of integration [0, b′1] (partially) overlaps with the last two intervals of Eq. (18), so we get:

EUN−2
a (ω, r2, b

′
1, b

′
2) =

1

b′1
·
(∫ 1−2r2

0

1

2
− 1

2
r1dr1 +

∫ b′1

1−2r2

r2dr1
)

=
1

b′1
·
(1
2
r1 −

1

4
r21

∣∣∣1−2r2

0
+ (b′1 − (1− 2r2)) · r2

)
=

1

b′1
·
(1
2
(1− 2r2)−

1

4
(1− 2r2)

2 + (b′1 − 1)r2 + 2r22

)
=

1

b′1
·
(1
2
(1− 2r2)−

1

4
(1− 4r2 + 4r22) + (b′1 − 1)r2 + 2r22

)
=

1

b′1
·
(1
2
− r2 −

1

4
+ r2 − r22 + (b′1 − 1)r2 + 2r22

)
=

1

b′1
·
(1
4
+ r22 − (1− b′1)r2

)

Case 6: 0 ≤ 1− 2b2 ≤ 1− 2r2 ≤ b′1

In this case the interval of integration [0, b′1] has some overlap with all three intervals of Eq. (18), so we get:



EUN−2
a (ω, r2, b

′
1, b

′
2) =

1

b′1
·
(∫ 1−2b2

0

b2 dr1 +

∫ 1−2r2

1−2b2

1

2
− 1

2
r1dr1 +

∫ b′1

1−2r2

r2dr1
)

=
1

b′1
·
(
(1− 2b2) · b2 +

1

2
r1 −

1

4
r21

∣∣∣1−2r2

1−2b2

+ (b′1 − (1− 2r2)) · r2
)

=
1

b′1
·
(
b2 − 2b22 +

1

2
(1− 2r2)−

1

4
(1− 2r2)

2 − 1

2
(1− 2b2) +

1

4
(1− 2b2)

2 + (b′1 − 1)r2 + 2r22

)
=

1

b′1
·
(
b− 2b22 + (b2 − r2)−

1

4
(1− 4r2 + 4r22) +

1

4
(1− 4b2 + 4b2) + (b′1 − 1)r2 + 2r22

)
=

1

b′1
·
(
b2 − 2b22 + b2 − r2 −

1

4
+ r2 − r22 +

1

4
− b2 + b22 + (b′1 − 1)r2 + 2r22

)
=

1

b′1
·
(
b2 − b22 + r22 − (1− b′1)r2

)

Now, in order to find the optimal offer, we should remark that there is an important difference between the parameters b′1 and r2 on the one
hand, and the parameter b2 on the other hand. That is, when α2 chooses her optimal offer, b′1 and r2 are fixed. On the other hand, the value of
b2 depends on the offer that she chooses.

We therefore group the above six cases together into three larger cases, each corresponding to only the ordering between the fixed values 0,
b′1 and 1− 2r2.

• Case A: 1− 2r2 ≤ 0 ≤ b′1. This is in fact case 3.
• Case B: 0 ≤ 1− 2r2 ≤ b′1. This includes cases 5 and 6.
• Case C: 0 ≤ b′1 ≤ 1− 2r2. This includes cases 1, 2, and 4.

Case A

Case A happens when 1
2
< r2. This case is equivalent to Case 3, and we have already seen that in that case we have:

EUN−2
a (ω, r2, b

′
1, b

′
2) = r2

This means that it does not matter which offer ω agent α2 proposes. The reservation value of α2 is so high that any rational offer is going to
be rejected anyway.

Case B

In Case B we have: 0 ≤ 1− 2r2 ≤ b′1, which is equivalent to

r2 ∈ [
1

2
− 1

2
b′1 ,

1

2
]

Combining the two results of Cases 5 and 6 we get:

EUN−2
a (ω, r2, b

′
1, b

′
2) =


1
b′1

·
(
b2 − b22 + r22 − (1− b′1)r2

)
if b2 ≤ 1

2

1
b′1

·
(

1
4
+ r22 − (1− b′1)r2

)
if 1

2
≤ b2

(21)

Recall that the right-hand side depends on ω through:

b2 = min { b′2 , u2(ω) }

So, to find the offer ω that maximizes EUN−2
a we need to find the value of b2 that maximizes it.

So, if we treat this expression as a function of b2, then we see that it is a concave parabola on the first interval, while it is constant on the
second interval. Differentiating the parabola with respect to b2 and setting its derivative to 0 we get:

1− 2 · b2 = 0

which means the maximum of the parabola is attained at 1
2

, and since the function is constant after b2 = 1
2

, the function is in fact maximal for
any b2 with b2 ≥ 1

2
.

In other words: to maximize its expected anticipated utility, α2 can choose any offer ω with u2(ω) ≥ 1
2

.



Case C

We have: 0 ≤ b′1 ≤ 1− 2r2, which is equivalent to stating r2 ≤ 1
2
− 1

2
b′1.

Combining the results of cases 1, 2 and 4 we get:

EUN−2
a (ω, r2, b

′
1, b

′
2) =


b2 if b2 ≤ 1

2
− 1

2
b′1

1
b′1

·
(
b2 − b22 − 1

4

)
+ 1

2
− 1

4
b′1 if 1

2
− 1

2
b′1 ≤ b2 ≤ 1

2

1
2
− 1

4
b′1 if 1

2
≤ b2

(22)

Again, we will regard this as a function of b2. Note that it is linear on the first interval, and constant on the third interval. Furthermore note that
its value on the third interval is strictly greater than any value attained on the first interval.

Now, to find the maximum, we need to differentiate the expression for the middle interval. If we do this and then set its derivative to 0 we
get, again:

1− 2 · b2 = 0

so the maximum is attained at x = 1
2

. Reasoning in the same way as for Case B we conclude that α2 can maximize its expected anticipated
utility EUN−2

a by proposing any offer ω with u2(ω) ≥ 1
2

.
Putting the results of Cases A, B, and C together, we have proven the theorem.


